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Summary

The sequenual procedure developed by Chaturvedi [2] for estimating the
regressnon parameters in a linear model is further analyzed. Much simpler proof is
provided 'for the asymptotic nsk-efﬁclency and second-order approximations are
obtained for the expected sample size and ‘regret’ associated with the sequential
procedure. The problem of bounded risk point estimation is also discussed.
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Introduction

Consider the linear model
y'—XIB'FEl(l 7-',"')

‘Where. x; is pxl vector of known constants, § is the pxl vector of unknown
parameters, and ¢;'s are disturbance terms, independent and normally distributed

with mean( and vanance o Havmg recordedyy,...,y,0NX;, ..., X, respectively,
let x,=(x1... %), Yo=0y;-. . yy)' Use the usual least squares estimator

Ba = (s %)™ X', Y, to estimate B.

Let the loss incurred in eﬁﬁmaﬁng B by ﬁn be

1%

L@ A=A BB oax) Ga-p)| O,

(i.l)
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Where A, @, C and t are known positive constants. The ﬁsk corresponding to the
loss function (1.1) is

ve(0) =K (p, o) Z; + Cnt
n

(1.2)

where K (p, @) = A2**T [(p + a)2)/T ®2). Forknown o, the sample size which
minimizes v, (o) is the smallest positive integer n = n,, where

n = (32ch) K(p, &) o*¢ (1.3)
and éetting n=n, in (1.2), the corresponding minimum risk is
Vg, (0)=C(1+%a)n, (1.4)

But, in the ignorance of o, no fixed sample size procedure minimizes v, (o)

simultaneously for all values of o. In such a situation, motivated by (1.3), adopt
the following sequential procedure.

Let us define, for
nzp+1, 8,2, =(m-p)* Yo [l - Xa (X'n Xo)™ X'a] Y. as the estimator for

o7, where I; denotes a kxk identity matri)L Then, the stopping time N=N(o) is given
by

N=inf[nzm:nz {(‘Vfcn) K(p, @) Ad; }zmm)

o] @)
where m{ = p+1) being the jnitial sarple size. When stop, estimate § by ﬁN

AsinStarr [6]and Starrand Woodroofe [7], the ‘risk- efficiency’ and ‘regret’
of the sequential procedure (1.5) are defined, respectively, by

() =¥ (oK, (0)
and

@ (0) =V (0) - vy, (0) W)
where V(o) is the risk-associated with the sequential procedure, i.e.

V(o) = K(p,a)oE(N") + CE(N)
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= 2C)nl* P E (N + CE (N (1.8)

Chaturvedi [2], using much complicated algebra and many probability
inequalities, obtained a condition on the starting satple size m, which ensures the
asymptotic (as o —> ) nsk—efficxcncy of the sequential procedure (1.5) and

proved- that limm(c)=1ifm>p+a/a+2) He also obtained first-order

o—>%0

asymptotics for the ‘regret’ and proved that, for t = 1, lim w(c)=0O(1) if and

g—+x©
only ifm 2 p + & . For a=2 and t=1, i.e., when the loss is quadratic plus linear cost
of sampling, Chaturvedi [2] derived second-order approximations for the ‘regret’
-..and proved thatlim (o) =1+0(1) for m = p+1.

g—®

The purpose of this note is to obtain a much simpler proof of the asymptotic’
‘risk-efficiency’ and second-order approximations for the ‘regret’. In section 2, a
condition onthe initial sample size is determined which could guarantee asymptotic

‘risk- efficiency’. In section 3, improving the bounds for ‘regret’ obtained by
Chaturvedi [2], second order approximations are achieved. Finally, in section 4,
- the problem of bounded risk point estimation of f is discussed.

2. Asymptotic Risk-E] fﬁcier_icy
We first establish three lemmas.

Lemma 1

Forany A(>0) fixedandm = p + 1, lim E®™4 ) =1
og—®

Proof : If follows from the definition (1.5) of N that

)
} 2 +a)

[("/ZCt) K{p,a) oN <Ns {(%Ct) K (p,00) N}Z(Zt+a)+(m 1)

or,

(ON/e)* ) 5 M) = (On/o)™* 4+ Tm - 1)q)

which on usmg the facts that {limN =, lim= ¢ a.s.and

g—+® N—-m

lim n, =, leads us to the result that

ag—+x

cl,l_x.ri Ni)=1 as. @.1) -
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Using the fact that [see, Judge, and Bock (1978, p.20, Theorem A.2.16) for
‘A a-p )
proof] (n - p) o3 = > Z;, with Zj ~ x” (1), we obtain from (1.3),

=

Vo) = [ + (m — W]

. 4 TP afnd) »
‘ ~fa-p* 3 2+ (m- U]
j=1
It follows from Wiener ergodic theorem (see, Khan [5]) that

N

P /(at2t)
e o

!
|
‘ " E| sup [(n—p)'IE Z
nzp+l =1

Thus, ™Va,)* is integrable and the lemma follows from (2.1) and dominated
‘ convergence theorem.
Lemma 2 (Hayre [3])

Let Zy, Z5,. . .be i.i.d. Chi-squared with ane degree of freedom, and let

. M= inf M @Zi+Zy+ ...+ Z)
nzk

Then, for 1>0, E (i ) < ifand only if k > 21.

'

For  A(>0)fixed, LmE(mpAN)*=1 if m>p+20Aa+21)
g~

Proof: 1t follows from the definition (1.5) of N that
(n(m)h < (o/(’;,n)i’al/(u +2t)

P /(4 20)
=[@p)" 3 %]
j=1
Sincen = m applying Lemma 2, we conclude that E (ngfy)* <o if m>p+2a)/(o+2t).

Hence, (8¢/y)" is integrabale for all m > p+20/(c+2t) and the lemma follows from
(2.1) and dominated convergence theorem. :

)
\
\
\

The main result of this section is stated in the following theorem, which
provides a condition on starting sample size ensuring asymptotic “risk-efficiency”.




e
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Theorem 1

lim n(o) =1, if m>p+a/as2r)

g—ro

Proof : Making substitutions from (1 4) and (1.8) in (1.6), we obtain after some
algebra,

N (©) = (142 )" [E(N/;o Y + C4%) E (sofg)” ]

The proof is now an immediate consequence of Lemmas 1 and 3.

~-Remark 1: It is concluded that the condltlon obtained on m in Theorem 1 is -

consistent with that obtained in Theorem 1 of Chaturvedi [2]. However here we

“have not studied the behaviour of 1(0) for the cases when (i) m = p+a’ /(o+2t) and

(i) m < p+a’/(a+2t), but one may not be interested in the situations when the
asymptotic risk-efficiency is not achieved.

3. Second-Order Approximations for the Regret

The following theorem provides-second-order- approximations for. the
expected sample size associated with the sequential procedure (1.5).

Theorem 2 :

For t=1and m>p+2a/(a+2), as o= o,

E(N) =ng + —— {v - 2@+ 1/a +2)} - p + O(1)

(o 2)
Proof: For t=1, the stopping rule (1.5) may be re-written as

o -1 -1
=inf[nzm:¥ Z =™ ) n"**) (n-p)]
P (3.1)

Let us define a new-stopping time t, by

to=inf[ n=m-p: 2 Z sn(',(l +2a) [atea’) a +pn-1)(1+2a' )]
j=l (32)

Following the proof of Lemma 1 in Swanepoel and van Wyk [8], it can be
shown that the steeping rules (3.1) and (3.2) follow the same probability
distribution. From (3.2) and equation (1.1) of Woodroofe [9], we obtain in the
notations of Woodroofe [9];

m=m- p,S+EZ, '(1"2“),a=2(1+a'1)

=
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L) = (1+pn )™ | fr= (142077, Lo=p(142a™), 2 =15

" Now, from Theorem 2.4 of Woodroofe [9], we obtain for all
m > p+2%{(a+2), as o> ®,

E(to) = nc)""“’/(mz) p‘2(““”1)/(<x+2) + 0(1),
“and the theorem follows. Here, v is glven by Theorem 2.2 of Woodroofe [9].

In the following theorem, we shall obtain second-order approximations for
the “regret”.

Theorem3 : Fort=1and m > p+20/(0+2), as g —>

(o) = Co’/2(a+2) + O(1)

Proof : From (1.4) and (1.8), substituting the values of v, (0) and V(o) in (1.7),
we getfort=1,

o(o) = (2C/a)n8m) E(N“” ""’+CE(N—no) - (33)

Expandmg N* about no by Taylor series. cxpans1on, we obtam for A
[U-mo|s|N-no|

. ©(0) = @) "™ E [(32) (N-nohng**
+ (XN (2)@a+1) U2 | 4 éE(N—no)
| - o2y B[N0’ o) 7]
- _Denotmg by P, the c.d.£, of N, we can write
o) =L+ (.49)
v&here_

L= {é(“?z)ﬁno} f (N-ng )? (fy )**? dp

"Nsv/,
.#nd L= {C(a+2y4n0} f (N—no) (0ot )(cmz) dp
.. N>ty

as: .
Smce (no/U) ———> laso—>w for sufficieritly large o, we have (o)) <K,
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where K is any generic constant independent of 0. From Corollary 2 of Chaturvedi
[2], P(N sn¢%) = O(c™™P), as 6 — . Thus

Il =0 (0,2%a+2)+p—m)
=0(1) | (3.5)

for all m > p +2%(a+2). It follows from a result of Bhattacharya and Mallik [1]

that the asymptotic distribution of (N—no)/ ng‘ is N[O,Zorz/(oz+2)2 ]. Moreover,
from Theorem 2.3 of Woodroofe [9], (N—n0)2/n0 is uniformly integerable for all
m > p+2%a+2). Hence, we obtain for all.m > p+2%{(a+2), as o —>

I, = Coa'(as2) (3.6)

The theorem now follows on making substitutions from (3.5) and (3.6) in (3.4).
4. Bounded Risk Point Estimation of B

Let the loss of estimating B by f_\in is

a/2

. 8\ _ l R _ay v A _ ’
LB, B = A (B - B X' X)) (Ba-B) @1 -

The risk associated with the los§ (4.1) is
Va (0) = K(p,0) %4 : (4.2)
Here, A,a and K(p,a) are same as that defined in Section 1. For specified W( > 0,

suppose one wishes that the risk (4.2) should not exceed W. It is easy to see that,
for known o, the sample size needed to achieve the goal is the smallest positive

2
. integern=n',wheren’ = [K(p,an}/a o’ In the absence of any knowledge about
o, we adopt the following sequential procedure.

The stopping time is defined by
Ya A
=inf[nzm:nz{Kp,a)|W}".0]] @3)
Estimate B by Py

For the sequential procedure (4.3), we state the following theorem, the proof
+ of which can be obtained exactly along the lines of-that of Theorem 2 after -
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~

necessary modifications at various places.
Theorem 4 : Forallm>p+2, as 6 —> o,

EN)=n"+v'-p-2+0(1),
where v* is specified.

The following theorem gives second-order approximations for the expected
loss of the sequential procedure (4.3). :

Theorem 5: For allm > p+2,as ¢ —>
E[ LB B 1 = W1-(%) {v' -p-(0+2%2} ] + O(1)

Proof : Expanding N™* about n" by Taylor series, we get

For IU—n' l < IN—n’
E[L' (B Bn)]
= WE(n/)™
R (92+2)
-W [1-(%,;) B (N-) + [o(=+2)g," | E {M } (l) ]
. . n U

Now wusing Theorem 4, the results (N-n’ Yn*) L N(0,2) as
T o> ®, (N-n')’4" is uniformly integrable for all m > p+2 and the arguments

. similar to those in the proof of Theorem 3, we can obtain the desired results. The

details are omitted for brevity.
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